资源类型

期刊论文 209

会议视频 2

会议信息 1

年份

2024 2

2023 21

2022 20

2021 21

2020 17

2019 9

2018 8

2017 8

2016 11

2015 6

2014 6

2013 9

2012 9

2011 8

2010 15

2009 9

2008 12

2007 7

2006 1

2005 4

展开 ︾

关键词

个人热管理 2

柔性机器人 2

液体燃料 2

绿色化工 2

N-糖组 1

CCD影像 1

CO2 加氢 1

N-聚糖 1

Ni–Ti–Cu–V合金 1

TOC 1

TRIZ 1

[BMIm]PF6 1

[C6MIm]PF6 1

[PMIm]PF6 1

三相界面 1

中药 1

主-客体化学 1

亲合煅烧 1

亲合颗料 1

展开 ︾

检索范围:

排序: 展示方式:

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

《能源前沿(英文)》   页码 796-810 doi: 10.1007/s11708-023-0877-5

摘要: Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h2 < 0, h2 is the height of expanded channel for E-MCHS) and when over plate was raised (h2 > 0).

关键词: liquid metal cooling     heat sink     expanded microchannel     flow and thermal modeling    

Liquid metal cooling in thermal management of computer chips

MA Kunquan, LIU Jing

《能源前沿(英文)》 2007年 第1卷 第4期   页码 384-402 doi: 10.1007/s11708-007-0057-3

摘要: With the rapid improvement of computer performance, tremendous heat generation in the chip becomes a major serious concern for thermal management. Meanwhile, CPU chips are becoming smaller and smaller with almost no room for the he

关键词: tremendous     computer performance     generation     management     improvement    

锌液冷却管损坏机理的研究

袁望姣,何将三

《中国工程科学》 2005年 第7卷 第9期   页码 56-60

摘要:

炼锌工业中广泛使用由无缝钢管冷弯而成的冷却管来实现锌液的冷却。冷却管的使用寿命非常短,消耗量相当大。锌液的表面张力小,渗透性强,腐蚀性强,能与冷却管中的铁元素生成铁-锌合金,能溶解冷却管中碳、硅等元素,锌液对冷却管的强腐蚀性,是影响锌液冷却管使用寿命的决定性因素;锌液冷却管的损坏是高温腐蚀和应力腐蚀共同作用的结果,热应力和残余应力促使其损坏由高温腐蚀向应力腐蚀发展;冷却管损坏位置由热应力和残余应力共同决定,其中热应力起主导作用。

关键词: 锌液     冷却管     损坏机理     高温腐蚀     应力腐蚀    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling

Xiao-Hu YANG, Jing LIU

《能源前沿(英文)》 2018年 第12卷 第2期   页码 259-275 doi: 10.1007/s11708-017-0521-3

摘要: As a class of newly emerging material, liquid metal exhibits many outstanding performances in a wide variety of thermal management areas, such as thermal interface material, heat spreader, convective cooling and phase change material (PCM) for thermal buffering etc. To help mold next generation unconventional cooling technologies and further advance the liquid metal cooling to an ever higher level in tackling more extreme, complex and critical thermal issues and energy utilizations, a novel conceptual scientific category was dedicated here which could be termed as combinatorial liquid metal heat transfer science. Through comprehensive interpretations on a group of representative liquid metal thermal management strategies, the most basic ways were outlined for developing liquid metal enabled combined cooling systems. The main scientific and technical features of the proposed hybrid cooling systems were illustrated. Particularly, five abstractive segments toward constructing the combinatorial liquid metal heat transfer systems were clarified. The most common methods on innovating liquid metal combined cooling systems based on this classification principle were discussed, and their potential utilization forms were proposed. For illustration purpose, several typical examples such as low melting point metal PCM combined cooling systems and liquid metal convection combined cooling systems, etc. were specifically introduced. Finally, future prospects to search for and make full use of the liquid metal combined high performance cooling system were discussed. It is expected that in practical application in the future, more unconventional combination forms on the liquid metal cooling can be obtained from the current fundamental principles.

关键词: combinatorial heat transfer     liquid metal     high flux cooling     thermal management    

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below

Yunxia GAO, Lei WANG, Haiyan LI, Jing LIU

《能源前沿(英文)》 2014年 第8卷 第1期   页码 49-61 doi: 10.1007/s11708-013-0285-3

摘要: The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

关键词: liquid metal     cryogenics     low melting point     thermal management     aircraft     liquid cooling     space exploration    

绿色高能效数据中心散热冷却技术研究现状及发展趋势

陈心拓 , 周黎旸 , 张程宾, 王树华 , 张亮亮, 陈建峰

《中国工程科学》 2022年 第24卷 第4期   页码 94-104 doi: 10.15302/J-SSCAE-2022.04.010

摘要: Research of data center fresh air ventilation cooling system [J].The merits of open bath immersion cooling of datacom equipment [C].Spray cooling heat transfer: The state of the art [J].Nucleate boiling heat transfer in spray cooling [J].An overview of combined absorption power and cooling cycles [J].

关键词: 数据中心     绿色节能     散热冷却     液体冷却    

液态金属科技与工业的崛起:进展与机遇

刘静

《中国工程科学》 2020年 第22卷 第5期   页码 93-103 doi: 10.15302/J-SSCAE-2020.05.016

摘要:

常温液态金属及其衍生材料是近年来异军突起的新兴功能物质,该领域取得了一系列突破性发现,催生出诸多全新的材料创制与应用,被视为人类利用金属的第二次革命。本文扼要介绍了液态金属物质科学领域涌现出的若干典型进展、基础问题与工业应用范例,剖析现象背后的科学规律,具体包括:芯片冷却与能源利用、印刷电子学与增材制造(3D打印)、生物材料学、柔性智能机器学。在此基础上,论述了提出“液态金属谷”的时代背景、发展液态金属新工业体系的基本途径,阐述了推进液态金属材料基因工程研究并构建相应数据库的重要意义。液态金属作为兼具基础探索与实际应用价值的重大科学、技术与工业前沿,发展前景广阔;相应研究有望促进人类物质文明进步、优化社会生产和生活方式,也将深刻影响中国乃至世界寻求新一代变革性科技与工业的进程。

关键词: 液态金属     新材料     颠覆性技术     新工业     先进冷却     印刷电子     生物医学材料     柔性机器人    

基于液冷的电池热管理系统快充-冷却耦合规划方法 Article

陈思琦, 包能胜, Akhil Garg, 彭雄斌, 高亮

《工程(英文)》 2021年 第7卷 第8期   页码 1165-1176 doi: 10.1016/j.eng.2020.06.016

摘要:

高效的快速充电技术对电动汽车行驶里程的拓展十分重要。然而,锂离子电池在大电流充电倍率下会大量产热。为解决这一问题,急需一种高效的快速充电-冷却规划方法。此次研究针对锂离子电池组的快速充电过程,设计了一种配有微流道的基于液冷的热管理系统。基于81组实验数据,提出了一种基于神经网络的回归模型,由三个考虑以下输出的子模型构成:最高温度、温度标准差及功耗。训练后的子模型均呈现出较高的测试准确性(99.353%、97.332%和98.381%)。此回归模型用于预测一个设计方案全集的三个输出参数,此全集由不同充电阶段的充电电流倍率[0.5C、1C、1.5C、2C和2.5C(1C = 5 A)],以及不同的冷却液流量(0.0006 kg·s-1、0.0012 kg·s-1和0.0018 kg·s-1)组成。最终从预测得到的设计方案全集中筛选出一组最优过程方案,并经实验得到了验证。结果表明在功耗低于0.02 J的情况下电池组荷电状态(SOC)值经15 min充电后增长了0.5。同时最高温度和温度标准差可分别控制在33.35 ℃和0.8 ℃以内。本文所提出的方法可供电动汽车行业在实际快速充电工况下使用。此外,可以基于实验数据预测最佳快速充电-冷却计划,从而显著提高充电过程设计的效率,并控制冷却过程中的能耗。

关键词: 锂离子电池组     快速充电     神经网络回归     规划     荷电状态     功耗    

Study on forced air convection cooling for electronic assemblies

LI Bin, TAO Wenquan, HE Yaling

《能源前沿(英文)》 2008年 第2卷 第2期   页码 158-163 doi: 10.1007/s11708-008-0009-2

摘要: The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks. Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin, discrete plate fin and discrete slotted fin heat sinks. It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan. A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed. Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs. The limit of cooling capacity for air-cooling techniques was also addressed.

关键词: concept     slotted     air-cooling     Preliminary computation     generation    

Energy efficiency of small buildings with smart cooling system in the summer

Yazdan DANESHVAR, Majid SABZEHPARVAR, Seyed Amir Hossein HASHEMI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 651-660 doi: 10.1007/s11708-020-0699-7

摘要: In this paper, a novel cooling control strategy as part of the smart energy system that can balance thermal comfort against building energy consumption by using the sensing and machine programming technology was investigated. For this goal, a general form of a building was coupled by the smart cooling system (SCS) and the consumption of energy with thermal comfort cooling of persons simulated by using the EnergyPlus software and compared with similar buildings without SCS. At the beginning of the research, using the data from a survey in a randomly selected group of hundreds and by analyzing and verifying the results of the specific relationship between the different groups of people in the statistical society, the body mass index (BMI) and their thermal comfort temperature were obtained, and the sample building was modeled using the EnergyPlus software. The result show that if an intelligent ventilation system that can calculate the thermal comfort temperature was used in accordance with the BMI of persons, it can save up to 35% of the cooling load of the building yearly.

关键词: smart home     heating and cooling systems     saving energy     optimal consumption of energy    

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1323-1335 doi: 10.1007/s11705-022-2275-7

摘要: Liquid–liquid mixing, including homogeneous and heterogeneous mixing, widely exists in the chemical industry. How to quantitatively characterize the mixing performance is important for reactor assessment and development. As a convenient and direct method for mixing characterization, the chemical probe method uses some special test reactions to characterize the mixing results. Here, the working principle and selection requirements of this method are introduced, and some common chemical probe systems for homogeneous and heterogeneous mixing processes are reviewed. The characteristics and applications of these systems are illustrated. Finally, the development of the new system is proposed.

关键词: mixing     chemical probe     liquid–liquid     heterogeneous    

面向异构集成应用的“片上”嵌入式冷却技术的研究进展 Review

Srikanth Rangarajan, Scott Schiffres, Bahgat Sammakia

《工程(英文)》 2023年 第26卷 第7期   页码 185-197 doi: 10.1016/j.eng.2022.10.019

摘要:

The electronics packaging community strongly believes that Moore’s law will continue for another few years due to recent technological efforts to build heterogeneously integrated packages. Heterogeneous integration (HI) can be at the chip level (a single chip with multiple hotspots), in multi-chip modules, or in vertically stacked three-dimensional (3D) integrated circuits. Flux values have increased exponentially with a simultaneous reduction in chip size and a significant increase in performance, leading to increased heat dissipation. The electronics industry and the academic research community have examined various solutions to tackle skyrocketing thermal-management challenges. Embedded cooling eliminates most sequential conduction resistance from the chip to the ambient, unlike separable cold plates/heat sinks. Although embedding the cooling solution onto an electronic chip results in a high heat transfer potential, technological risks and complexity are still associated with the implementation of these technologies and with uncertainty regarding which technologies will be adopted. This manuscript discusses recent advances in embedded cooling, fluid selection considerations, and conventional, immersion, and additive manufacturing-based embedded cooling technologies.

关键词: 电子冷却     嵌入式冷却     浸入式冷却    

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

《结构与土木工程前沿(英文)》 2010年 第4卷 第4期   页码 431-437 doi: 10.1007/s11709-010-0071-9

摘要: When a historic fa?ade needs to be preserved or when the seismic considerations favor use of a concrete wall system and fire considerations limit exterior thermal insulation, one needs to use interior thermal insulation systems. Interior thermal insulation systems are less effective than the exterior systems and will not reduce the effect of thermal bridges. Yet they may be successfully used and, in many instances, are recommended as a complement to the exterior insulation. This paper presents one of these cases. It is focused on the most successful applications of capillary active, dynamic interior thermal insulation. This happens when such insulation is integrated with heating, cooling and ventilation, air conditioning (HVAC) system. Starting with a pioneering work of the Technical University in Dresden in development of capillary active interior insulations, we propose a next generation, namely, a bio-fiber thermal insulation. When completing the review, this paper proposes a concept of a joint research project to be undertaken by partners from the US (where improvement of indoor climate in exposed coastal areas is needed), China (indoor climate in non-air conditioned concrete buildings is an issue), and Germany (where the bio-fiber technology has been developed).

关键词: capillary active insulation     integrated heating     cooling and ventilation     air conditioning (HVAC) and building enclosure     dynamic insulation     switchable thermal resistance     variable U-value walls    

evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

标题 作者 时间 类型 操作

Flow and thermal modeling of liquid metal in expanded microchannel heat sink

期刊论文

Liquid metal cooling in thermal management of computer chips

MA Kunquan, LIU Jing

期刊论文

锌液冷却管损坏机理的研究

袁望姣,何将三

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free

Haiyan LI, Jing LIU

期刊论文

Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling

Xiao-Hu YANG, Jing LIU

期刊论文

Liquid metal as energy transportation medium or coolant under harsh environment with temperature below

Yunxia GAO, Lei WANG, Haiyan LI, Jing LIU

期刊论文

绿色高能效数据中心散热冷却技术研究现状及发展趋势

陈心拓 , 周黎旸 , 张程宾, 王树华 , 张亮亮, 陈建峰

期刊论文

液态金属科技与工业的崛起:进展与机遇

刘静

期刊论文

基于液冷的电池热管理系统快充-冷却耦合规划方法

陈思琦, 包能胜, Akhil Garg, 彭雄斌, 高亮

期刊论文

Study on forced air convection cooling for electronic assemblies

LI Bin, TAO Wenquan, HE Yaling

期刊论文

Energy efficiency of small buildings with smart cooling system in the summer

Yazdan DANESHVAR, Majid SABZEHPARVAR, Seyed Amir Hossein HASHEMI

期刊论文

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

期刊论文

面向异构集成应用的“片上”嵌入式冷却技术的研究进展

Srikanth Rangarajan, Scott Schiffres, Bahgat Sammakia

期刊论文

A concept of capillary active, dynamic insulation integrated with heating, cooling and ventilation, air

Mark BOMBERG

期刊论文

evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling

期刊论文